
Security Audit Report for Neptune Mutual
Cover

Date: June 21, 2022

Version: 1.0

Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 2

1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2

1.3.2 DeFi Security . 3

1.3.3 NFT Security . 3

1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

2 Findings 5
2.1 Software Security . 5

2.1.1 Shadowed variables . 5

2.1.2 Unchecked input parameters . 7

2.1.3 Conflict access control checks in the updateCoverUsersWhitelist function 8

2.2 DeFi Security . 9

2.2.1 Incentivization design problems . 9

2.2.2 Potential oracle manipulation . 9

2.2.3 Potential uninitialized price information . 10

2.2.4 Incorrect check of the return value of the transfer function 11

2.2.5 Incorrect logic in the removeLiquidity function . 11

2.2.6 Incorrect handling of LP tokens in the removeLiquidity function 12

2.2.7 Potential less reward distributed to the first reporter 13

2.2.8 Potential fee rate manipulation . 15

2.2.9 Incorrect logic of calculating the deposit amount for strategies 16

2.2.10 No fixed voting reward claim period for false reporting 17

2.3 Additional Recommendation . 18

2.3.1 Remove the redundant calculation . 18

2.3.2 Remove the debug logs . 18

2.4 Additional Note . 19

2.4.1 Potential centrality problems . 19

i

Report Manifest

Item Description
Client Neptune
Target Neptune Mutual Cover

Version History

Version Date Description
1.0 June 21, 2022 First Release

About BlockSec The BlockSec Team focuses on the security of the blockchain ecosystem, and col-

laborates with leading DeFi projects to secure their products. The team is founded by top-notch security

researchers and experienced experts from both academia and industry. They have published multiple

blockchain security papers in prestigious conferences, reported several zero-day attacks of DeFi applica-

tions, and released detailed analysis reports of high-impact security incidents. They can be reached at

Email, Twitter and Medium.

ii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

Neptune Mutual is an on-chain insurance project. Basically, it allows other DApp projects to create

“covers”, and users can buy these “covers” by paying fees and receive “cxTokens”. Note that an IPFS

URL needs to be specified to create a cover, and this url is used to indicate the content of the cover

(e.g., the list of events which will be covered). Therefore, when a security incident occurs (e.g., a project

protected by the cover is hacked with some losses), it will be reported on-chain and determined by a

consensus procedure, i.e., users can lock their NPM tokens to vote for or against the validity of this report.

If the validity is accepted, each “cxToken” can be claimed to a single unit of stablecoin 1. Furthermore,

to support the claim procedure, liquidity providers (LPs) can provide liquidity to the liquidity vaults created

for the covers. The fees paid by cover purchasers are also transferred to these vaults. If no incident

happens, the LPs earn the fees; otherwise, liquidity from LPs will be distributed to cover purchasers as the

compensation. Namely, it means that unlike most DeFi protocols, the LPs are subject to losses. Finally,

all the liquidity in the vaults is not locked in the contract. Instead, a PCV-like strategy is employed so that

a portion of the available liquidity in the pool is deposited into AAVE and Compound to earn interests, and

the interests are distributed proportionally to the LPs. Apart from that, the vaults also support flash loans

to earn fees for LPs.

As the Neptune project is a big project with a large number of contracts and complicated inter-

dependencies, the auditors assume that:

The contract addresses and roles are set correctly.

Some duplication of checks (for example, some access control requirements are checked twice) are

ignored if they do not affect the semantics of the code.

The auditing process is iterative. Specifically, we will audit the commits that fix the discovered issues.

If there are new issues, we will continue this process. The commit SHA values of the repo 2 during the

audit are shown in the following. Our audit report is responsible for the code in the initial version (Version

1), as well as new code (in the following versions) to fix issues in the audit report. Note that, we did NOT
audit all the modules in the repository. Only the newest version of the contracts are within the audit scope.

Project Commit SHA

Neptune Mutual Cover
Version 1 d3abb479c0c9e1c972430d4113408ddfc20be5b5

Version 2 de4e313dd6e8076454b6e5998bb739d897439253

1E.g., DAI in Ethereum, which means 1 “cxToken” can be claimed into 1 DAI.

2https://github.com/neptune-mutual-blue/protocol

1

https://github.com/neptune-mutual-blue/protocol

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report do not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

Reentrancy

DoS

Access control

Data handling and data flow

Exception handling

Untrusted external call and control flow

Initialization consistency

Events operation

Error-prone randomness

Improper use of the proxy system

2

1.3.2 DeFi Security

Semantic consistency

Functionality consistency

Permission management

Business logic

Token operation

Emergency mechanism

Oracle security

Whitelist and blacklist

Economic impact

Batch transfer

1.3.3 NFT Security

Duplicated item

Verification of the token receiver

Off-chain metadata security

1.3.4 Additional Recommendation

Gas optimization

Code quality and style�
Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 3 and Common Weakness Enumeration 4.

The overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to

estimate how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact

is used to measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered issue will fall into one of the following four categories:

Undetermined No response yet.

Acknowledged The issue has been received by the client, but not confirmed yet.

Confirmed The issue has been recognized by the client, but not fixed yet.

3https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

4https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Table 1.1: Vulnerability Severity Classification
Im

pa
ct

High High Medium

Low Medium Low

High Low

Likelihood

Fixed The issue has been confirmed and fixed by the client.

4

Chapter 2 Findings

In total, we find thirteen potential issues. Besides, we also have two recommendations and one
note.

- High Risk: 2

- Medium Risk: 5

- Low Risk: 6

- Recommendation: 2

- Note: 1

ID Severity Description Category Status
1 Low Shadowed variables Software Security Fixed
2 Medium Unchecked input parameters Software Security Fixed

3 Low
Conflict access control checks in the
updateCoverUsersWhitelist function

Software Security Fixed

4 High Incentivization design problems DeFi Security Fixed
5 High Potential oracle manipulation DeFi Security Fixed
6 Low Potential uninitialized price information DeFi Security Acknowledged

7 Low
Incorrect check of the return value of the
transfer function

DeFi Security Fixed

8 Low
Incorrect logic in the removeLiquidity function

DeFi Security Fixed

9 Medium
Incorrect handling of LP tokens in the
removeLiquidity function

DeFi Security Fixed

10 Medium
Potential less reward distributed to the first re-
porter

DeFi Security Acknowledged

11 Medium Potential fee rate manipulation DeFi Security Fixed

12 Medium
Incorrect logic of calculating the deposit
amount for strategies

DeFi Security Fixed

13 Low
No fixed voting reward claim period for false re-
porting

DeFi Security Acknowledged

14 - Remove the redundant calculation Recommendation Fixed
15 - Remove the debug logs Recommendation Acknowledged
16 - Potential centrality problems Note Acknowledged

The details are provided in the following sections.

2.1 Software Security

2.1.1 Shadowed variables

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description The design of the Neptune contract system has a root Store contract that other contracts

store all the related data to this contract, scoped by different prefixes and hashed keys. Both the deploy

5

function of cxTokenFactory and VaultFactory contracts have a parameter s (which is a reference to the

core Store contract) that shadows the state variable s (which is also a reference to the Store contract,

but is inherited from the parent contract Recoverable). As these two variables have exactly the same

references, one of them should be removed.

36 function deploy(

37 IStore s,

38 bytes32 key,

39 uint256 expiryDate

40) external override nonReentrant returns (address deployed) {

41 // @suppress-acl Can only be called by the latest policy contract

42 s.mustNotBePaused();

43 s.mustBeValidCoverKey(key);

44 s.senderMustBePolicyContract();

45
46 require(expiryDate > 0, "Please specify expiry date");

47
48 (bytes memory bytecode, bytes32 salt) = cxTokenFactoryLibV1.getByteCode(s, key, expiryDate)

;

49
50 require(s.getAddress(salt) == address(0), "Already deployed");

51
52 // solhint-disable-next-line

53 assembly {

54 deployed := create2(

55 callvalue(), // wei sent with current call

56 // Actual code starts after skipping the first 32 bytes

57 add(bytecode, 0x20),

58 mload(bytecode), // Load the size of code contained in the first 32 bytes

59 salt // Salt from function arguments

60)

61
62 if iszero(extcodesize(deployed)) {

63 // @suppress-revert This is correct usage

64 revert(0, 0)

65 }

66 }

67
68 s.setAddress(salt, deployed);

69 s.setBoolByKeys(ProtoUtilV1.NS_COVER_CXTOKEN, deployed, true);

70 s.setAddressArrayByKeys(ProtoUtilV1.NS_COVER_CXTOKEN, key, deployed);

71
72 emit CxTokenDeployed(key, deployed, expiryDate);

73 }

Listing 2.1: cxTokenFactory.sol

34 function deploy(IStore s, bytes32 key) external override nonReentrant returns (address addr) {

35 s.mustNotBePaused();

36 s.mustHaveNormalCoverStatus(key);

37 s.senderMustBeCoverContract();

38
39 (bytes memory bytecode, bytes32 salt) = VaultFactoryLibV1.getByteCode(s, key, s.getStablecoin

6

());

40
41 // solhint-disable-next-line

42 assembly {

43 addr := create2(

44 callvalue(), // wei sent with current call

45 // Actual code starts after skipping the first 32 bytes

46 add(bytecode, 0x20),

47 mload(bytecode), // Load the size of code contained in the first 32 bytes

48 salt // Salt from function arguments

49)

50
51 if iszero(extcodesize(addr)) {

52 // @suppress-revert This is correct usage

53 revert(0, 0)

54 }

55 }

56
57 emit VaultDeployed(key, addr);

58 }

Listing 2.2: VaultFactory.sol

9 abstract contract Recoverable is ReentrancyGuard, IRecoverable {

10 using ValidationLibV1 for IStore;

11 IStore public override s;

Listing 2.3: Recoverable.sol

Impact N/A

Suggestion Remove one of the references of the Store contract.

2.1.2 Unchecked input parameters

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description In the _addCover function of the CoverLibV1 library, some critical parameters are used to

create covers. Note that these parameters are important because they would affect the behavior of the

created covers. For example, it is allowed to set the claim period to be zero. However, although in other

situations these parameters are verified, they are not checked in the _addCover function.

124 function _addCover(

125 IStore s,

126 bytes32 key,

127 bytes32 info,

128 address reassuranceToken,

129 bool requiresWhitelist,

130 uint256[] memory values,

131 uint256 fee

132) private {

7

133 s.setBoolByKeys(ProtoUtilV1.NS_COVER, key, true);

134
135 s.setStatusInternal(key, 0, CoverUtilV1.CoverStatus.Stopped);

136
137 s.setAddressByKeys(ProtoUtilV1.NS_COVER_OWNER, key, msg.sender);

138 s.setBytes32ByKeys(ProtoUtilV1.NS_COVER_INFO, key, info);

139 s.setAddressByKeys(ProtoUtilV1.NS_COVER_REASSURANCE_TOKEN, key, reassuranceToken);

140 s.setUintByKeys(ProtoUtilV1.NS_COVER_REASSURANCE_WEIGHT, key, ProtoUtilV1.MULTIPLIER); //

100% weight because it’s a stablecoin

141 s.setBoolByKeys(ProtoUtilV1.NS_COVER_REQUIRES_WHITELIST, key, requiresWhitelist);

142
143 // Set the fee charged during cover creation

144 s.setUintByKeys(ProtoUtilV1.NS_COVER_FEE_EARNING, key, fee);

145
146 s.setUintByKeys(ProtoUtilV1.NS_GOVERNANCE_REPORTING_MIN_FIRST_STAKE, key, values[2]);

147 s.setUintByKeys(ProtoUtilV1.NS_GOVERNANCE_REPORTING_PERIOD, key, values[3]);

148 s.setUintByKeys(ProtoUtilV1.NS_RESOLUTION_COOL_DOWN_PERIOD, key, values[4]);

149 s.setUintByKeys(ProtoUtilV1.NS_CLAIM_PERIOD, key, values[5]);

150 s.setUintByKeys(ProtoUtilV1.NS_COVER_POLICY_RATE_FLOOR, key, values[6]);

151 s.setUintByKeys(ProtoUtilV1.NS_COVER_POLICY_RATE_CEILING, key, values[7]);

152 }

Listing 2.4: CoverLibV1.sol

Impact These important parameters might be abused.

Suggestion Add proper checks to verify these parameters.

2.1.3 Conflict access control checks in the updateCoverUsersWhitelist function

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description The cover creators are allowed to set a whitelist so that only the whitelisted users can

purchase covers. The creators are allowed to update this whitelist through the updateCoverUsersWhitelist

function. However, there is a conflict check in the updateCoverUsersWhitelist function that requires the

caller to be both the cover manager and the cover owner/admin.

148 function updateCoverUsersWhitelist(

149 bytes32 key,

150 address[] memory accounts,

151 bool[] memory statuses

152) external override nonReentrant {

153 s.mustNotBePaused();

154 AccessControlLibV1.mustBeCoverManager(s);

155 s.senderMustBeCoverOwnerOrAdmin(key);

156
157 s.updateCoverUsersWhitelistInternal(key, accounts, statuses);

158 }

Listing 2.5: Cover.sol

8

Impact This function may be inaccessible because of the conflict checks.

Suggestion Remove either of them.

2.2 DeFi Security

2.2.1 Incentivization design problems

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description Neptune is an insurance-like project so that anyone is able to buy covers for the project

they are holding. There exists a reporting-and-voting mechanism when a security incident occurs (e.g.,

the covered project is attacked). Specifically, the reporters are responsible for reporting the real world

incidents, while the voters are responsible for determining the validity of the reported incidents. Reporters

and voters are rewarded for their contributions accordingly.

However, due to the difficulty of verifying the on-chain identities, there are at least two cases where

the incentivization design can be abused:

1. A reporter finds that no one has spotted and reported the incident, then the optimal action for him/her

is to buy cxTokens (maybe through another account) first to earn more.

2. If the attacker’s target is covered in Neptune. Then his optimal action would be buying cxTokens first,

then completing the attack, and finally reporting this incident.

Impact In these cases, the cover has to pay for a “bad” purchaser that has already foreseen the result,

which violates the cover design and causes losses to LPs.

Suggestion N/A

Feedback from the Project We have added a new “exclusion” to all covers stating that policies will only

be effective after 24 hours of purchase. Or in other words, policies purchased within the last 24 hours

(in this case, before reporting starts or the real incident happened) are not valid and therefore excluded.

Since anyone can purchase cover at any time, we group “effective date” by taking the UTC EOD (end of

the day) timestamp after 24 hours of the policy purchase date.

Since a reporting period of 7-days is started once a report is submitted, this gives us enough time

to manually (or in an automated way) to blacklist any malicious users who purchase the protection. Here,

we manually set addresses and amounts that are ineligible to receive the payout. Because we are tak-

ing “ethereum address” into consideration when implementing blacklist and delayed coverage, we have

restricted the transferability of cxTokens.

2.2.2 Potential oracle manipulation

Severity High

Status Fixed in Version 2

Introduced by Version 1

Description The prices used in the project (e.g., the NPM price) are derived from the Uniswap V2 pair

reserves directly, which is subject to price manipulation attacks. Though the reserve information is updated

9

in an specified interval (e.g., the current price of the Uniswap V2 pair would not be effective after the

interval specified by the NS_LIQUIDITY_STATE_UPDATE_INTERVAL parameter) to prevent flashloan attacks, it

still suffers from the following problems:

- The token prices in the project are delayed, i.e., the current prices used are updated in the previous

interval. It would cause the normal price fluctuations cannot be timely reflected into the project.

- This design cannot prevent price manipulation attacks. Specifically, a price manipulation attack can

be achieved by the following actions:

1. The attacker manipulates the reserves in the (NPM, stablecoin) pair.

2. The normal transaction that triggers the updateStateAndLiquidity is executed, updating the

manipulated reserves (and hence the manipulated price) into the system.

3. The attacker exploits the manipulated price (e.g., in the Bonding).

107 function getPriceInternal(

108 IStore s,

109 address token,

110 address stablecoin,

111 uint256 multiplier

112) public view returns (uint256) {

113 IUniswapV2PairLike pair = _getPair(s, token, stablecoin);

114 IUniswapV2RouterLike router = IUniswapV2RouterLike(s.getUniswapV2Router());

115
116 uint256[] memory values = getLastKnownPairInfoInternal(s, pair);

117 uint256 reserve0 = values[0];

118 uint256 reserve1 = values[1];

119
120 if (pair.token0() == stablecoin) {

121 return router.getAmountIn(multiplier, reserve0, reserve1);

122 }

123
124 return router.getAmountIn(multiplier, reserve1, reserve0);

125 }

Listing 2.6: PriceLibV1.sol

Impact The price oracle is subject to price manipulation attacks and may suffer from delayed prices

under some extreme circumstances, which may cause the loss of the protocol. For example, the NPM

token price is used in both BondPool and cxToken fee calculation (for provision liquidity calculation).

Suggestion To further solve the price oracle problem, a TWAP price on top of the Uniswap V2 pair is

recommended.

2.2.3 Potential uninitialized price information

Severity Low

Status Acknowledged

Introduced by Version 1

Description The BondPool contract is used to provide the holders of the LP token of a specified Uniswap-

like pair to buy the NPM tokens at a discounted price. Under normal assumptions, the LP token is consid-

ered to be the pair of the stablecoin and the NPM token. Then the price of this pair is regularly updated and

10

stored. However, if this LP token refers to other pairs, the pair information would not be properly updated

and the transaction would revert.

Impact The pair information may not be updated on time if the LP token refers to other pairs.

Suggestion N/A

Feedback from the Project The Bond Pool feature will ALWAYS have one LP pair (NPM/USDC or

NPM/DAI) at one given time, which is less likely to change. The LP pair can change only if we decide that

we want to migrate liquidity to a different stablecoin, say from DAI to USDC or vice versa.

2.2.4 Incorrect check of the return value of the transfer function

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description Some contracts in the project inherit the Recoverable contract so that the project owners

can withdraw the full amount of any tokens from the contract. This functionality is implemented so that any

funds which are accidentally sent to the contracts can be recovered. Internally, the recoverTokenInternal

function in the BaseLibV1 library handles the transfer. In the recoverTokenInternal function, the plain

ERC-20 transfer function is used and the return value is force checked, which could not handle some

special tokens (e.g., USDT) that do not strictly comply with the ERC-20 standard.

30 function recoverTokenInternal(address token, address sendTo) external {

31 // @suppress-address-trust-issue, @suppress-malicious-erc20 Although the token can’t be

trusted, the recovery agent has to check the token code manually.

32 IERC20 erc20 = IERC20(token);

33
34 uint256 balance = erc20.balanceOf(address(this));

35
36 if (balance > 0) {

37 require(erc20.transfer(sendTo, balance), "Transfer failed");

38 }

39 }

40 }

Listing 2.7: BaseLibV1.sol

Impact The token with incorrect implementation (i.e., it does not return any value in the transfer func-

tion) cannot be recovered from the protocol.

Suggestion Replace ERC20 transfer with the SafeTransfer library of OpenZeppelin.

2.2.5 Incorrect logic in the removeLiquidity function

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description In the removeLiquidity function of the VaultLiquidity contract, the caller can specify the

exit parameter. This parameter is used in the VaultLibV1.preRemoveLiquidityInternal function to call

11

the _unStakeNpm function, indicating that the user wants to unstake the NPM tokens provided in the adding

liquidity procedure. Unfortunately, this implementation has the following two flaws:

1. The stake mechanism might be broken. Note that users must stake some NPM tokens in the

addLiquidity function. However, it allows a user that has staked NPM in the adding liquidity pro-

cedure to withdraw the staked NPM by removing a (small) amount of liquidity and setting the exit

parameter to true.

2. The behavior of invoking the removeLiquidity function with the exit parameter set to true seems to

be problematic. It allows a user to withdraw part of the staked NPMs. However, such a behavior is

far away from the semantic of exit.

200 function _unStakeNpm(

201 IStore s,

202 address account,

203 bytes32 coverKey,

204 uint256 amount,

205 bool exit

206) private {

207 uint256 remainingStake = _getMyNpmStake(s, coverKey, account);

208 uint256 minStakeToMaintain = exit ? 0 : s.getMinStakeToAddLiquidity();

209
210 require(remainingStake - amount >= minStakeToMaintain, "Can’t go below min stake");

211
212 s.subtractUintByKey(CoverUtilV1.getCoverLiquidityStakeKey(coverKey), amount); // Total

stake

213 s.subtractUintByKey(CoverUtilV1.getCoverLiquidityStakeIndividualKey(coverKey, account),

amount); // Your stake

214 }

Listing 2.8: VaultLibV1.sol

Impact The exit parameter does not work as expected, and the requirement of staking NPM when

adding liquidity can be bypassed.

Suggestion Fix the incorrect logic.

2.2.6 Incorrect handling of LP tokens in the removeLiquidity function

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description In the removeLiquidity function of the VaultLiquidity contract, after transferring the LP

tokens from the LP to the vault, the LP tokens are not burned but kept in the vault. As a result, the

totalSupply of the LP tokens could not be properly calculated.

95 function removeLiquidity(

96 bytes32 coverKey,

97 uint256 podsToRedeem,

98 uint256 npmStakeToRemove,

99 bool exit

100) external override nonReentrant {

12

101 // @suppress-acl Marking this as publicly accessible

102 require(coverKey == key, "Forbidden");

103 require(podsToRedeem > 0, "Please specify amount");

104
105 /**

106 PRE

107 ***

*/

108 (address stablecoin, uint256 stablecoinToRelease) = delgate().preRemoveLiquidity(msg.sender

, coverKey, podsToRedeem, npmStakeToRemove, exit);

109
110 /**

111 BODY

112 ***

*/

113 IERC20(address(this)).ensureTransferFrom(msg.sender, address(this), podsToRedeem);

114 IERC20(stablecoin).ensureTransfer(msg.sender, stablecoinToRelease);

115
116 // Unstake NPM tokens

117 if (npmStakeToRemove > 0) {

118 IERC20(s.getNpmTokenAddress()).ensureTransfer(msg.sender, npmStakeToRemove);

119 }

120
121 /**

122 POST

123 ***

*/

124 delgate().postRemoveLiquidity(msg.sender, coverKey, podsToRedeem, npmStakeToRemove, exit);

125
126 emit PodsRedeemed(msg.sender, podsToRedeem, stablecoinToRelease);

127
128 if (exit) {

129 emit Exited(coverKey, msg.sender);

130 }

131
132 if (npmStakeToRemove > 0) {

133 emit NPMUnstaken(msg.sender, npmStakeToRemove);

134 }

135 }

Listing 2.9: VaultLiquidity.sol

Impact The incorrect totalSupply of the LP tokens may cause the loss of the LPs for withdrawal.

Suggestion Burn the LP tokens transferred to the Vault in the removeLiquidity function.

2.2.7 Potential less reward distributed to the first reporter

Severity Medium

Status Acknowledged

Introduced by Version 1

13

Description To provide incentives to the reporter, the first reporter (address) that reports the incident

has a special reward. Specifically, after an IncidentHappened report, voters in the winning camp can claim

the voting rewards by invoking the Unstakable.unstakeWithClaim function. Every claim would distribute

rewards to the voter, the first reporter and the burner address (i.e. some rewards in NPM are burnt),

respectively. However, this mechanism has a defect that the first report may receive less than expected if

there are voters not claiming their rewards.

60 function unstakeWithClaim(bytes32 key, uint256 incidentDate) external override nonReentrant {

61 require(incidentDate > 0, "Please specify incident date");

62
63 // @suppress-acl Marking this as publicly accessible

64 // @suppress-pausable Already checked inside ‘validateUnstakeWithClaim‘

65 s.validateUnstakeWithClaim(key, incidentDate);

66
67 address finalReporter = s.getReporterInternal(key, incidentDate);

68 address burner = s.getBurnAddress();

69
70 (, , uint256 myStakeInWinningCamp, uint256 toBurn, uint256 toReporter, uint256 myReward,) = s

.getUnstakeInfoForInternal(msg.sender, key, incidentDate);

71
72 // Set the unstake details

73 s.updateUnstakeDetailsInternal(msg.sender, key, incidentDate, myStakeInWinningCamp, myReward,

toBurn, toReporter);

74
75 uint256 myStakeWithReward = myReward + myStakeInWinningCamp;

76
77 s.npmToken().ensureTransfer(msg.sender, myStakeWithReward);

78
79 if (toReporter > 0) {

80 s.npmToken().ensureTransfer(finalReporter, toReporter);

81 }

82
83 if (toBurn > 0) {

84 s.npmToken().ensureTransfer(burner, toBurn);

85 }

86
87 s.updateStateAndLiquidity(key);

88
89 emit Unstaken(msg.sender, myStakeInWinningCamp, myReward);

90 emit ReporterRewardDistributed(msg.sender, finalReporter, myReward, toReporter);

91 emit GovernanceBurned(msg.sender, burner, myReward, toBurn);

92 }

Listing 2.10: Unstakable.sol

Impact The first reporter may not get all the rewards.

Suggestion N/A

Feedback from the Project This behavior is by design and we will update the documentation to explain

this in more detail. The first/honest/resolved reporter receives a cut of reward received by each individual

unstaker.

Reference: https://docs.neptunemutual.com/covers/cover-reporting

14

https://docs.neptunemutual.com/covers/cover-reporting

2.2.8 Potential fee rate manipulation

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description The factors that are used to calculate the fee rates for buying cxToken are subject to manip-

ulation. Specifically, the fee rate is calculated based on the following formula:

totalAvailableLiquidity = stablecoinOwnedByVault+ supportPool (2.1)

utilizationRatio = (commitment+ amountToCover)/totalAvailableLiquidity (2.2)

Note that the final fee rate is proportional to utilizationRatio. As such, the factors can be manipu-

lated in the following way:

The NPM price is subject to price manipulation, and finally affects the fee rate. Please see the issue

in Section 2.2.2 for potential price manipulation. The manipulation of the NPM price would lead to

the manipulation of the supportPool, and hence the fee rate.

The stablecoinOwnedByVault can be manipulated by flashloans. A cxToken buyer A can borrow

external flashloans and provide liquidity in the withdrawal period. Because within the withdrawal

period, adding and removing liquidity can be done in one transaction. Specifically, the strategy of A

can be illustrated in the following three steps:

- Borrowing the flashloan from other platforms and adding liquidity.

- Buying cxTokens with a discount, because the stablecoinOwnedByVault is larger with the liq-

uidity added in the first step, which lowers the fee rate.

- Removing liquidity and paying back the flashloan. Note that the cxToken fee generated from

the second step is distributed to liquidity providers immediately and proportionally. Due to the

liquidity provision in the first step, the fee is also distributed to A. It further lowers the cost for

A to buy the covers.

22 function calculatePolicyFeeInternal(

23 IStore s,

24 bytes32 key,

25 uint256 coverDuration,

26 uint256 amountToCover

27)

28 public

29 view

30 returns (

31 uint256 fee,

32 uint256 utilizationRatio,

33 uint256 totalAvailableLiquidity,

34 uint256 floor,

35 uint256 ceiling,

36 uint256 rate

37)

38 {

39 (floor, ceiling) = getPolicyRatesInternal(s, key);

15

40 (uint256 stablecoinOwnedByVault, uint256 commitment, uint256 supportPool) =

_getCoverPoolAmounts(s, key);

41
42 require(amountToCover > 0, "Please enter an amount");

43 require(coverDuration > 0 && coverDuration <= 3, "Invalid duration");

44 require(floor > 0 && ceiling > floor, "Policy rate config error");

45
46 require(stablecoinOwnedByVault - commitment > amountToCover, "Insufficient fund");

47
48 totalAvailableLiquidity = stablecoinOwnedByVault + supportPool;

49 utilizationRatio = (ProtoUtilV1.MULTIPLIER * (commitment + amountToCover)) /

totalAvailableLiquidity;

50
51 console.log("[cp] s: %s. p: %s. u: %s", stablecoinOwnedByVault, supportPool, utilizationRatio)

;

52 console.log("[cp]: %s, a: %s. t: %s", commitment, amountToCover, totalAvailableLiquidity);

53
54 rate = utilizationRatio > floor ? utilizationRatio : floor;

55
56 rate = rate + (coverDuration * 100);

57
58 if (rate > ceiling) {

59 rate = ceiling;

60 }

61
62 fee = (amountToCover * rate * coverDuration) / (12 * ProtoUtilV1.MULTIPLIER);

63 }

Listing 2.11: PolicyHelperV1.sol

Impact The attacker may buy cxTokens with an unfair discount.

Suggestion N/A

Feedback from the Project NPM token pricing dependence will be removed along with NPM provision

feature. We will update the add and remove liquidity function to have at least one block gap between the

two.

2.2.9 Incorrect logic of calculating the deposit amount for strategies

Severity Medium

Status Fixed in Version 2

Introduced by Version 1

Description The stablecoin liquidity deposited in the vaults is further provided into lending projects like

AAVE and Compound to earn interest. Specifically, the RoutineInvokerLibV1 library is used to provide the

logic for depositing into different strategies. In the _canDeposit function, the current deposit amount and

the maximum amount that can be deposited are calculated and compared. The calculation and comparison

are used to ensure that sufficient liquidity is preserved before depositing to the lending projects.

However, there is a logic problem in the calculation, as the _canDeposit function will be called regard-

less of the status of the current strategy. Specifically, this function can be invoked out of the withdrawal pe-

riod. By doing so, the liquidity will not be withdrawn from the strategies, which means the maximumAllowed

16

amount that is calculated based on the current balance of the vault can be small. As a result, some liquidity

in the vaults may not be deposited to earn interest.

169 function _canDeposit(

170 IStore s,

171 ILendingStrategy strategy,

172 uint256 totalStrategies,

173 bytes32 key

174) private view returns (uint256) {

175 address vault = s.getVaultAddress(key);

176 IERC20 stablecoin = IERC20(s.getStablecoin());

177
178 uint256 maximumAllowed = (stablecoin.balanceOf(vault) * s.getMaxLendingRatioInternal()) /

ProtoUtilV1.MULTIPLIER;

179 uint256 allocation = maximumAllowed / totalStrategies;

180 uint256 weight = strategy.getWeight();

181 uint256 canDeposit = (allocation * weight) / ProtoUtilV1.MULTIPLIER;

182 uint256 alreadyDeposited = s.getAmountInStrategy(key, strategy.getName(), address(stablecoin))

;

183
184 if (alreadyDeposited >= canDeposit) {

185 return 0;

186 }

187
188 return canDeposit - alreadyDeposited;

189 }

Listing 2.12: RoutineInvokerLibV1.sol

Impact Some liquidity in the vaults might not be deposited to earn interest due to the incorrect calculation

in the canDeposit function.

Suggestion Fix the incorrect logic.

2.2.10 No fixed voting reward claim period for false reporting

Severity Low

Status Acknowledged

Introduced by Version 1

Description If an incident report is voted as false, the state of the cover will remain FalseReporting until

the finalization is requested by the governance. In contrast, in the case of IncidentHappened, a fixed claim

period is set to let both the cxToken holders and the voters in the winning camp to claim their compensation

and rewards.

Impact Without a fixed claim period, if the state of the cover is finalized by the governance agent, the

winning camp of the refuting side cannot withdraw their rewards.

Suggestion Setting another fixed period for the winning camp to claim their voting rewards for the

FalseReporting incident.

Feedback from the Project When an incident is incorrectly reported by malicious actors who do not

care about their reporting fee being forfeited but just want to create nuisance for the cover creators and

17

our protocol, we want to be able to quickly resolve the incident with as little delay as possible and reset the

cover back to the normal status.

In this situation, the amount of time to access the ‘unstakeWithClaim‘ function will be made available

on a case to case basis. In other words, based on the the-then situation and request from cover creators,

we would manually announce that we would resolve the cover within 24 hours or 48 hours and so that the

witnesses should unstake (with claim) as soon as they can or before this time.

We need this flexibility to defend against targeted attacks to specific cover pools. Furthermore, we

may customize and shorten the reporting period of individual covers and/or increase the minimum amount

of first reporting stake required so that financial risk arising from this attack is bigger and enough to deter

unwanted reportings.

2.3 Additional Recommendation

2.3.1 Remove the redundant calculation

Status Fixed in Version 2

Introduced by Version 1

Description In the getReportingUnstakenAmountInternal function of the GovernanceUtilV1 contract,

the key for retrieving the storage value is calculated twice.

184 function getReportingUnstakenAmountInternal(

185 IStore s,

186 address account,

187 bytes32 key,

188 uint256 incidentDate

189) public view returns (uint256) {

190 bytes32 k = keccak256(abi.encodePacked(ProtoUtilV1.NS_GOVERNANCE_UNSTAKE_TS, key,

incidentDate, account));

191 k = keccak256(abi.encodePacked(ProtoUtilV1.NS_GOVERNANCE_UNSTAKEN, key, incidentDate,

account));

192 return s.getUintByKey(k);

193 }

Listing 2.13: GovernanceUtilV1.sol

Impact N/A

Suggestion Remove the redundant calculation to save gas.

2.3.2 Remove the debug logs

Status Acknowledged

Introduced by Version 1

Description There are some contracts that contain debug logs using the console.log library from the

hardhat, including:

PolicyHelperV1

StrategyLibV1

18

AaveStrategy

CompoundStrategy

Impact N/A

Suggestion Remove the debug logs.

Feedback from the Project We intend to keep the hardhat logs in the production environment as well

for easy debugging and investigation on the mainnet, using Tenderly.

2.4 Additional Note

2.4.1 Potential centrality problems

Severity Low

Status Acknowledged

Introduced by Version 1

Description Being served as an insurance project, the Neptune project relies on some external informa-

tion to make decisions. As a result, certain centrality is introduced to let the project owners assign certain

critical values or make decisions, including but not limited to:

The cover content (specified by an IPFS URL) can be updated by invoking the updateCover function.

There is a cool down period after each reporting in which the project owners are able to change the

result of the report under emergency.

The reward distribution in the BondPool and StakingPool relies on the project owners to transfer

enough reward tokens to the contract, otherwise some of the users may not be able to withdraw the

rewards.

Any tokens left in the contracts which inherit from Recoverable can be extracted by the RecoveryAgent.

The project owners are allowed to modify any storage values of the core Store contract, and add/re-

move contracts to/from the project.

The governance is responsible for resolving and finalizing all incidence reports. Neither cover cre-

ators nor stakers/voters have the right to do that.

Impact N/A

Suggestion N/A

19

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Shadowed variables
	2.1.2 Unchecked input parameters
	2.1.3 Conflict access control checks in the structurecolorupdateCoverUsersWhitelist function

	2.2 DeFi Security
	2.2.1 Incentivization design problems
	2.2.2 Potential oracle manipulation
	2.2.3 Potential uninitialized price information
	2.2.4 Incorrect check of the return value of the structurecolortransfer function
	2.2.5 Incorrect logic in the structurecolorremoveLiquidity function
	2.2.6 Incorrect handling of LP tokens in the structurecolorremoveLiquidity function
	2.2.7 Potential less reward distributed to the first reporter
	2.2.8 Potential fee rate manipulation
	2.2.9 Incorrect logic of calculating the deposit amount for strategies
	2.2.10 No fixed voting reward claim period for false reporting

	2.3 Additional Recommendation
	2.3.1 Remove the redundant calculation
	2.3.2 Remove the debug logs

	2.4 Additional Note
	2.4.1 Potential centrality problems

		2022-06-21T15:56:57+0800
	BlockSec Audit Team

